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ABSTRACT

A valuable visual indicator to grade the stiffness and strength of planks can be obtained by analyzing the
structure of the grain on it. To integrate an analyzing image vision module in an industrial selection process a
real-time system is needed to build. Two main objectives must be reached: First a stable edge detector should
extract the grain edges. Second these grain edges have to be tracked to achieve a complete grain representation.
This representation can be used to analyze the regularity of the grain. Since the visual nature of grain varies a
lot even on a single plank we present an edge detector which is adaptive and a grain tracking algorithm capable
of closing gaps between pixels. Both steps work in real-time (i.e. 5 frames per second resulting in 1 meter per
second).
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1. INTRODUCTION

Strength and stiffness of wood are essential parameters for any further usage of lumber. Unfortunately these
parameters can only be determined exactly by destructive methods. To avoid the destruction of lumber many
visual features can be used for strength grading (cf.1).

New non-destructive methods to determine stiffness and strength are under research in the European project
INTELLIWOOD (granted under no. IMS 29680). One of the main objectives of this project is to refine the
relations between a vector of visual features and the stiffness and strength of the board.

For several reasons it is valuable to analyze the structure of the grain on the surface of wooden boards. In
our case the reason was to conclude from the regularity of the grain to the stiffness and strength of the board.
The grain is defined as the direction of the main anatomical elements of wood.

We designed and implemented a real-time capable vision system to measure the regularity of the grain. A
suitable side-effect of our approach is that the result can also be used to classify the boards into appearance
classes.

The crucial value for the grading of wood in this context is the so called modulus of elasticity (MOE). Once
this value is determined planks can be graded into several quality classes. Nowadays the MOE can only be
determined exactly by stretching and bowing the board with precise defined forces provided by very expensive
measuring devices. Not only that such a measuring equipment is not affordable for many small and medium
enterprises it is also a very tedious procedure, which should be spared in an industrial environment.

The connection between the regularity of the grain and the MOE of planks has been investigated in many
publications (cf.,2 3 or4). Simplifying one can say, that if the grain is perfectly parallel to the main direction of
the plank, the maximal strength of the wood is obtained (cf.5). So it seems natural to measure the difference
to the ideal direction.

Although the regularity is a visual feature, in commercial products the regularity of the grain is measured
by electrical capacitance (cf.6 or the “slope-of-grain indicator” of Metriguard cf.2).

This article proposes a visual approach to measure the regularity of the grain on the top side of planks.
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Our setup was restricted to a common gray-value CCD-Camera, since empirical tests show that color infor-
mation with its three times more amount of data to process is not in relation to the real-time restriction. The
camera is located perpendicular to the plank at a distance of 1m.

The main direction of the grain can mathematically be written as the ordinate of the board, which should
be also the ordinate of the image. For each row in the image we search for the grain lines, determine the main
direction of each grain line and calculate the mean deviation to the ideal direction. To compensate outliers an
average value is calculated over five up to ten pixel rows.

The main difficulties of this simple approach is to identify the grain pixels and to track the grain along
the board over gaps between the pixels. The main constraint to any solution of these problems is the real-
time capability. To solve the first problem we compared several edge detection techniques from simple Sobel
filters to locally adaptive thresholding techniques. Since the grain has generally blurred edges, most of these
standard techniques failed completely or delivered only insufficient results. In a first approach morphological
methods were considered. Although these methods supply suitable results in most cases their runtime is too
high. It turned out that a complete new approach, which combines a light model with an adaptive thresholding
technique, matches best to the given problem. The new technique treats every pixel of a row only twice and
detects up to 90 percent of the grain pixels.

To solve the second problem we developed a new grain tracking algorithm based on the Dijkstra algorithm
to calculate cheapest paths in an egde-weighted directed graph. The weights on the edges will be calculated by
an elliptic distance measuring the deviation of the next pixel to the main direction of the skein of pixels already
tracked. Since this approach needs a lot of line fitting, we propose also an updating algorithm for the fitting of
lines to sets of pixels iteratively enlarged by one pixel.

Altogether the whole algorithm is capable to handle up to 5 frames per second on a 1200 MHZ processor
with a LINUX operating system. A whole board of 1m length can be examined in less than a second. The
results are suitable to the given problem and promise to be a cheap alternative to the estimation of strength
and stiffness of boards.
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Figure 1: Sketch of the visual measuring approach

2. ADAPTIVE EDGE DETECTION

The first step in the analyzing process is to detect edges of wood grain. But as every natural phenomena grain
edges vary a lot in their visual appearance. So simple thresholding techniques or edge detecting filters like sobel
applied for the whole image must fail.

2.1. Local thresholding by n-level-set-fitting

An adaptive thresholding algorithm is the n-level-set-fitting presented in7 or.8 Dividing the image into a number
of rectangles this algorithm can be applied for every rectangle providing an adaptive method to segment the



Figure 2. Grain edges detected by n-level-set-fitting: The image was divided in 10x10 rectangles. For each rectangle a
3-level-set-fitting was fulfilled and the darkest level displayed

darker grain from the brighter background. This proceeding turns out to be very stable, but it took about 2s
to process the whole image.

The n-level-set-fitting provides a 2D thresholding approach, but in this context only a 1D approach is needed.

2.2. Line adaptive grain detection

A 1D approach to detect egdes has two advantages: First it is almost clear that it can be faster than a 2D
approach, second it can also be used by a line scan camera setup, which is very common in visual wood
inspection. We propose a line adaptive algorithm to detect local minima of the pixel line. Since the grain lines
are mostly thin lines of a width of one up to five pixels the following algorithm LINE ADAPTIVE MINIMA
leads to sufficient results:

Let [p0, . . . , pn−1] be a pixel line. After approximating the data of the pixel line with a parabola f , set
Pf := {pi|i ∈ {0, . . . , n − 1}, pi < f(i)} and let P0, . . . , Pk−1 be the connectivity components in Pf . Then the
algorithm LINE ADAPTIVE MINIMA calculates the global minima of each connectivity component in Pf

(cf. figure 3).

f

Figure 3. Sketch of an output of the algorithm LINE ADAPTIVE MINIMA: The circles mark the pixel values of
a pixel line. The bigger circles mark the line adaptive local minima due to the algorithm

One can see the fitting of a parabola to a pixel line as modeling the lighting distribution of a spotlight over
the board. Therefore the resulting pixels of the algorithm LINE ADAPTIVE MINIMA can be seen as
adapted to such a lighting condition.



Algorithm 1 LINE ADAPTIVE MINIMA Calculates a set of local minima
Input: Line of pixels [p0, . . . , pn−1]

Output: Set of local minima (r0, . . . rj−1) in 1, . . . , n

1: Let f(x) = ax2 + bx + c such that
∑n−1

i=0 (f(i)− pi)2 is minimal.
2: j := 0
3: rem Check, whether we initially start below the parabola or not
4: if p(0) < f(0) then
5: below :=true; h := 0; min := p(0)
6: else
7: below :=false
8: end if
9: for i := 1 to n− 1 do

10: if below then
11: if p(i) < f(i) then
12: rem still below
13: if min > p(i) then
14: min := p(i); h := i
15: end if
16: else
17: rem changed to above
18: below :=false
19: rj := h; j := j + 1
20: end if
21: else
22: rem polygon lower than value at i− 1
23: if p(i) < f(i) then
24: rem changed to below
25: min := p(i); h := i
26: below :=true
27: end if
28: end if
29: end for
30: return (r0, . . . , rj−1)



3. GRAIN TRACKING

The major difficulty to determine the main direction of the grain in the binary image, resulting from the
algorithm LINE ADAPTIVE MINIMA, is to isolate the corresponding pixels from each other and from the
distortion pixels. Since the grain contours in the binary image appear with a thickness of at most one pixel,
due to the nature of the algorithm, every pixel belongs at most to one grain skein, except distortion pixels.

The proposed method tries to track every grain skein from an initial pixel to the end of the skein by using
a method based on line fitting, dijkstra algorithm, elliptic distance and other basic techniques.

3.1. Graph Theory: Shortest Path

We define an undirected edge-weighted graph G = (N,E), with nodes N and edges E. A node u ∈ N is chosen
as the start node. The well-known Dijkstra algorithm9 delivers a so called spanning tree of G. Each node is
identified with a pixel and each edge represents the costs of connecting two pixels. For the described purpose,
an elliptic distance is applied, also known as the mahalanobis distance.

Considering the resulting spanning tree, there is a path for every leaf to the root of G with the minimum
sum of weights of the edges along the path. Finally we have to determine the so-called best leaf (see 3.5), whose
path represents the optimal grain skein on the plank.

3.2. The elliptic distance

Based on a directed straight line L (determined by line fitting through the previously considered pixels) we
define the elliptic distance as follows, whereas the fixed ratio α of the axes a and b of the ellipse is well-known.∗

With b := 1 the metrics dα,n1
ell : R2 → R is given by dα,n1

ell (p, p′) := a, i.e. the longer axis of the ellipse is taken
as the distance value. To determine a we assume that the point p is the center of the ellipse and p′ fixes the
ellipse. Since the normal form of an ellipse is used, p′ has to be rotated, so that the ellipse aligns with the given
straight line L:

p”1 =< t|n2 > and p”2 =< t|n1 > .

By solving 1 = p1”
2

a2 + p2”
2

b2 for a, the distance is determined depending on α and n1.

Since we cannot assume, that the perpendicular foot p ∈ L is known (see fig. 4), we have to determine
t which is given by t = tp + (c, r), whereas (c, r) is the vector between p′ and p (the current pixel)†. The
displacement vector tp is the vector from p to p, thus tp = dist(p, L) · n1. Here dist(p, L) denotes the signed
distance from the point p to the straight line L.
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Figure 4: Calculation of the elliptic distance between p and p′

Since the described metrics measures the distance to the points behind the current pixel as well, it could
appear that the distance to such a pixel is smaller than a better one straight ahead. In figure 5 an example is
depicted where dα,n1

ell (p, B) < dα,n1
ell (p, A). Therefore the nearest pixel is B, which is obviously incorrect.

To solve this problem, all the edge weights to pixels not lying ahead the current pixel (the estimated direction
is well-known in each step) are divided through a constant factor.

∗Empirical good results can be achieved with α = 0.3, respective α is calculated dynamically from the variances of
the considered pixels, cf.3.3

†The notation (c, r) is related to the relative column and row values in the distance map, described in 3.6



Figure 5: Problems with acute and obtuse angles

3.3. Line fitting
To determine the straight line Li a line fitting algorithm over the pixels pi, . . . , pi+n−1 is used (practically the
fitting is calculated on up to 5 pixels). Since we have to determine the Lis in every step along the grain, the
computation has to be very fast. An update strategy is useful, because Li−1 fitted to pi−1, . . . , pi+n−2 was
determined in a previous step.

The simpliest way to describe a straight line is the slope-intercept form as follows y = a · x + t. The
minimizing problem can be expressed by

n−1∑
i=0

(a · x(i) + t− y(i))2 minimal

With differentiation by a and t we obtain the minima, by setting the terms to zero and solving the resulting
equation by inserting into each other. So a and t depends only on the sums over xi, yi, x2

i , y2
i and xiyi. At the

step i the update algorithm substracts the values of pi−1 from the sums and adds those from pi+n−1.

Naturally the result for the parameter a can be very unstable, since all the xi’s can be near to a vertical line.
Therefore it makes sense to consider the variance σ2

X of all xi and σ2
Y of yi, resp. If σ2

X < σ2
Y before calculating

a and t, we exchange the abscisse with the ordinate. So the computation error is quite small.

3.4. Implementation on binary images
The algorithm SKEIN TRACKER processes from a well-defined start pixel in a binary image through the
neighbored pixels and thereby creates a set of pixel lists Si. Every of these can be considered as a single skein.
But after building these, a subset Si, . . . , Si+n−1 is singled out and named the best skein. The choice strategy
is described in 3.5. In figure 6 example skeins with all the possible pixel lists are depicted.

Let HG be a hypergraph of the graph described above. A node is a list of pixels, a part of a skein already
tracked. Edges are defined between nodes, if the startpixel of one pixellist is the beginning of an alternative way
starting from a pixel in the other list. So HG can be defined as a directed tree with a start node and leaves.

Figure 6: Skeins with the possible pixel lists

The both methods list add and list begin new list manage the pixel list structures. list add adds the pixel to
the current list and memorizes its distance to its predecessor. A list sorted ascending by the distance of all the
currently last pixels of all pixel lists is built internally. The first pixel in the list is taken and returned. The
method list begin new list starts a new pixel list. So the behaviour of the shortest path algorithm mentioned
above is accomplished.



Algorithm 2 SKEIN TRACKER tracks a skein on a binary image
Input: Binary image f : R2 → B, start pixel r = (r1, r2), local search radius rad

Output: Lists of pixels Si,n = {pi, . . . , pi+n−1} ⊆ S and L ⊆ S a set of pixellists with no successors

p := r;
2: while is valid(p) do

set marker on(f,p);
4: n := search nearest neighbor(p, rad);

if is valid(n) then
6: d := dist(n,p);

if is set marker on(f,n) = FALSE then
8: np := list add(n, d);

end if
10: end if

repeat
12: n := search next neighbor(p, rad);

if is valid(n) then
14: d := dist(n,p);

if is set marker on(f,n) = FALSE then
16: list begin new list(n, d);

end if
18: end if

until (is valid(n) = FALSE)
20: p := np;

end while

3.5. The best skein

As already mentioned, the alternative ways through the defined graph are considered too. Since it can occur,
that the tracking algorithm switches to some neighbored pixels, which itself represent an other skein, it is
crucial to consider the alternatives (cf. figure 7). Many methods were tested, to determine the correct skein,

Figure 7. Tracking changes to a neighbor grain skein, since distortion pixels between the two contours lead to an error.

but a common strategy is not known yet. For every different application the algorithm is used, another choice
technique is needed. In our experimental setup, where almost all grain skeins end up at the bottom of the
plank, the following method is used:

Considering all the leaves in the mentioned hypergraph HG above the one with the furthermost last pixel
in the list to the first pixel in the start-node list is used.

It is clear, that other possibilities are given, e.g. the number of pixels along the lists from each leaf to the
start node.

3.6. Time Speedup by Precalculating Distmaps

An ad-hoc implementation of the proposed algorithm leads to a very inefficient result, so that the real-time
capability cannot be reached.



Due to the fact of working on discrete data, the speed can be increased, by using distance maps in which
the current pixel is set to the middle of the map. With R ⊂ N und M := N × N × R a distance map DM is
defined as:

DM : R → M whereas DM(n) := (c, r, d)

The triples (c, r, d) are sorted by d ascending, whereas c is the relative column, r the relative row and d is
denoted as the corresponding distance value. So the expression DM(0) = (c, r, d) describes the nearest pixel
to the current, DM(1) the second nearest and so on. By this way only a local region around each pixel is
considered, so that each computation step takes only a constant amount of time.

The methods search nearest neighbor and search next neighbor in the algorithm 2 pass through the distance
map, determine the pixel position in the image and check, if the corresponding flag is set.

To speed up the algorithm the distance maps are actually not calculated at the moment the next neighbor
is searched. In an initialisation phase all possible distance maps were precalculated. The distance map depends
on the size m1 ×m2, on the normal vector of the fitted line n, the ratio of the ellipse’s axes and the translation
vector tp. Since we only can precompute a finite number of different distance maps, all the appearing values are
quantised. So we can determine a unique index, with which we can look for the corresponding map in an array.

On every step nearly all the pixels in the image corresponding to the current map have to be considered.
This could be restricted with some additional parameters: the maximum distance value dmax and the maximum
number of neighbors neighmax. Since the maps are sorted by the distance, the algorithm can terminate when
dmax is reached. The branching nature of the algorithm is restricted by neighmax, so that not all alternatives
are treated.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

30−40cm80−100cm

80−100cm

Plank

Direction of plank

Conventional color CCD−camera

Figure 8: Sketch of the experimental setup

As depicted in figure 8 a common grayscale CCD-camera is used with a shutter time of 1/150. The camera
is perpendicular to the board with a distance of about 100cm. The plank traverses with a speed of one meter
per second. A cold light source without flickering is used not to disturb the high speed camera and obtain a
diffuse light.

4.2. Results

On the pictures in figures 9 and 10 you can see the computation process. The binary image contains connected
pixels representing the grain and some distortion pixels between them. Near the knot in image 9 the grain is
blurred, which can cause problems other edge detection algorithms cannot cope with. Our approach extracts
nearly every grain.

The skein tracker depicted in the next image only delivers bad results near the knot, since the curvature is
very high. Practically the knots are detected otherwise, so that the influence can be eliminated further.



The graph on the right, represents the deviation from the main direction in every row. In this example the
mean error value over 10 lines is ploted. By the way positive error axis shows to the right.

Figure 9. From left to right: the original capture of a board, the adaptive edge detection result (Algorithm LINE
ADAPTIVE MINIMA), the skeins depicted in different grayscales and the deviation graph.

Figure 10. Another example, from left to right: original; result from the algorithm LINE ADAPTIVE MINIMA; result
from SKEIN TRACKER; deviation graph.

5. CONCLUSION

A real-time capable implementation of an image processing method measuring the deviation of the grain from
the main direction is presented to obtain an indicator to grade the stiffness and strength of planks. The results



encourage to build a commercial product measuring the regularity of the grain by visual inspection. Since the
regularity is also a visual feature this approach seems to be promising.
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